Rain
Rain is liquid precipitation, as opposed to non-liquid kinds of precipitation such as snow, hail and sleet. Rain requires the presence of a thick layer of the atmosphere to have temperatures above the melting point of water near and above the Earth's surface. On Earth, it is the condensation of atmospheric water vapor into drops of water heavy enough to fall, often making it to the surface. Two processes, possibly acting together, can lead to air becoming saturated leading to rainfall: cooling the air or adding water vapor to the air. Virga is precipitation that begins falling to the earth but evaporates before reaching the surface; it is one of the ways air can become saturated. Precipitation forms via collision with other rain drops or ice crystals within a cloud. Rain drops range in size from oblate, pancake-like shapes for larger drops, to small spheres for smaller drops.
Moisture moving along three-dimensional zones of temperature and moisture contrasts known as weather fronts is the major method of rain production[citation needed]. If enough moisture and upward motion is present, precipitation falls from convective clouds (those with strong upward vertical motion) such as cumulonimbus (thunderstorms) which can organize into narrow rainbands. In mountainous areas, heavy precipitation is possible where upslope flow is maximized within windward sides of the terrain at elevation which forces moist air to condense and fall out as rainfall along the sides of mountains. On the leeward side of mountains, desert climates can exist due to the dry air caused by downslope flow which causes heating and drying of the air mass. The movement of the monsoon trough, or intertropical convergence zone, brings rainy seasons to savannah climes. Rain is the primary source of freshwater for most areas of the world, providing suitable conditions for diverse ecosystems, as well as water for hydroelectric power plants and crop irrigation. Rainfall is measured through the use of rain gauges. Rainfall amounts are estimated actively by weather radar and passively by weather satellites.
The urban heat island effect leads to increased rainfall, both in amounts and intensity, downwind of cities. Global warming is also causing changes in the precipitation pattern globally, including wetter conditions across eastern North America and drier conditions in the tropics. Precipitation is a major component of the water cycle, and is responsible for depositing most of the fresh water on the planet. The globally averaged annual precipitation is 990 millimetres (39 in). Climate classification systems such as the Köppen climate classification system use average annual rainfall to help differentiate between differing climate regimes. Antarctica is the Earth's driest continent. Rain is also known or suspected on other worlds, composed of methane, iron, neon, and sulfuric acid rather than water.
There are four main mechanisms for cooling the air to its dew point: adiabatic cooling, conductive cooling, radiational cooling, and evaporative cooling. Adiabatic cooling occurs when air rises and expands.[6] The air can rise due to convection, large-scale atmospheric motions, or a physical barrier such as a mountain (orographic lift). Conductive cooling occurs when the air comes into contact with a colder surface,[7] usually by being blown from one surface to another, for example from a liquid water surface to colder land. Radiational cooling occurs due to the emission of infrared radiation, either by the air or by the surface underneath.[8] Evaporative cooling occurs when moisture is added to the air through evaporation, which forces the air temperature to cool to its wet-bulb temperature, or until it reaches saturation.[9]
The main ways water vapor is added to the air are: wind convergence into areas of upward motion,[10] precipitation or virga falling from above,[11] daytime heating evaporating water from the surface of oceans, water bodies or wet land,[12] transpiration from plants,[13] cool or dry air moving over warmer water,[14] and lifting air over mountains.[15] Water vapor normally begins to condense on condensation nuclei such as dust, ice, and salt in order to form clouds. Elevated portions of weather fronts (which are three-dimensional in nature)[16] force broad areas of upward motion within the Earth's atmosphere which form clouds decks such as altostratus or cirrostratus.[17] Stratus is a stable cloud deck which tends to form when a cool, stable air mass is trapped underneath a warm air mass. It can also form due to the lifting of advection fog during breezy conditions
In Hawaii, Mount Waiʻaleʻale, on the island of Kauai, is notable for its extreme rainfall, as it has the second highest average annual rainfall on Earth, with 460 inches (12,000 mm).[37] Systems known as Kona storms affect the state with heavy rains between October and April.[38] Local climates vary considerably on each island due to their topography, divisible into windward (Koʻolau) and leeward (Kona) regions based upon location relative to the higher mountains. Windward sides face the east to northeast trade winds and receive much more rainfall; leeward sides are drier and sunnier, with less rain and less cloud cover.[39]
In South America, the Andes mountain range blocks Pacific moisture that arrives in that continent, resulting in a desertlike climate just downwind across western Argentina.[40] The Sierra Nevada range creates the same effect in North America forming the Great Basin and Mojave Deserts.[41][42]
Tropical cyclones, a source of very heavy rainfall, consist of large air masses several hundred miles across with low pressure at the centre and with winds blowing inward towards the centre in either a clockwise direction (southern hemisphere) or counter clockwise (northern hemisphere).[50] Although cyclones can take an enormous toll in lives and personal property, they may be important factors in the precipitation regimes of places they impact, as they may bring much-needed precipitation to otherwise dry regions.[51] Areas in their path can receive a year's worth of rainfall from a tropical cyclone passage.[52]
Increasing temperatures tend to increase evaporation which can lead to more precipitation. Precipitation generally increased over land north of 30°N from 1900 through 2005 but has declined over the tropics since the 1970s. Globally there has been no statistically significant overall trend in precipitation over the past century, although trends have varied widely by region and over time. Eastern portions of North and South America, northern Europe, and northern and central Asia have become wetter. The Sahel, the Mediterranean, southern Africa and parts of southern Asia have become drier. There has been an increase in the number of heavy precipitation events over many areas during the past century, as well as an increase since the 1970s in the prevalence of droughts—especially in the tropics and subtropics. Changes in precipitation and evaporation over the oceans are suggested by the decreased salinity of mid- and high-latitude waters (implying more precipitation), along with increased salinity in lower latitudes (implying less precipitation and/or more evaporation). Over the contiguous United States, total annual precipitation increased at an average rate of 6.1 percent since 1900, with the greatest increases within the East North Central climate region (11.6 percent per century) and the South (11.1 percent). Hawaii was the only region to show a decrease (-9.25 percent).[56]
The most successful attempts at influencing weather involve cloud seeding which include techniques used to increase winter precipitation over mountains and suppress hail.[57]
Rainbands spawned near and ahead of cold fronts can be squall lines which are able to produce tornadoes.[62] Rainbands associated with cold fronts can be warped by mountain barriers perpendicular to the front's orientation due to the formation of a low-level barrier jet.[63] Bands of thunderstorms can form with sea breeze and land breeze boundaries, if enough moisture is present. If sea breeze rainbands become active enough just ahead of a cold front, they can mask the location of the cold front itself.[64]
Once a cyclone occludes, a trough of warm air aloft, or "trowal" for short, will be caused by strong southerly winds on its eastern periphery rotating aloft around its northeast, and ultimately northwestern, periphery (also known as the warm conveyor belt), forcing a surface trough to continue into the cold sector on a similar curve to the occluded front. The trowal creates the portion of an occluded cyclone known as its comma head, due to the comma-like shape of the mid-tropospheric cloudiness that accompanies the feature. It can also be the focus of locally heavy precipitation, with thunderstorms possible if the atmosphere along the trowal is unstable enough for convection.[65] Banding within the comma head precipitation pattern of an extratropical cyclone can yield significant amounts of rain.[66] Behind extratropical cyclones during fall and winter, rainbands can form downwind of relative warm bodies of water such as the Great Lakes. Downwind of islands, bands of showers and thunderstorms can develop due to low level wind convergence downwind of the island edges. Offshore California, this has been noted in the wake of cold fronts.[67]
Rainbands within tropical cyclones are curved in orientation. Tropical cyclone rainbands contain showers and thunderstorms that, together with the eyewall and the eye, constitute a hurricane or tropical storm. The extent of rainbands around a tropical cyclone can help determine the cyclone's intensity.[68]
Moisture moving along three-dimensional zones of temperature and moisture contrasts known as weather fronts is the major method of rain production[citation needed]. If enough moisture and upward motion is present, precipitation falls from convective clouds (those with strong upward vertical motion) such as cumulonimbus (thunderstorms) which can organize into narrow rainbands. In mountainous areas, heavy precipitation is possible where upslope flow is maximized within windward sides of the terrain at elevation which forces moist air to condense and fall out as rainfall along the sides of mountains. On the leeward side of mountains, desert climates can exist due to the dry air caused by downslope flow which causes heating and drying of the air mass. The movement of the monsoon trough, or intertropical convergence zone, brings rainy seasons to savannah climes. Rain is the primary source of freshwater for most areas of the world, providing suitable conditions for diverse ecosystems, as well as water for hydroelectric power plants and crop irrigation. Rainfall is measured through the use of rain gauges. Rainfall amounts are estimated actively by weather radar and passively by weather satellites.
The urban heat island effect leads to increased rainfall, both in amounts and intensity, downwind of cities. Global warming is also causing changes in the precipitation pattern globally, including wetter conditions across eastern North America and drier conditions in the tropics. Precipitation is a major component of the water cycle, and is responsible for depositing most of the fresh water on the planet. The globally averaged annual precipitation is 990 millimetres (39 in). Climate classification systems such as the Köppen climate classification system use average annual rainfall to help differentiate between differing climate regimes. Antarctica is the Earth's driest continent. Rain is also known or suspected on other worlds, composed of methane, iron, neon, and sulfuric acid rather than water.
Formation
Water-saturated air
Air contains water vapor and the amount of water in a given mass of dry air, known as the Mixing Ratio, is measured in grams of water per kilogram of dry air (g/kg).[1][2] The amount of moisture in air is also commonly reported as relative humidity; which is the percentage of the total water vapor air can hold at a particular air temperature.[3] How much water vapor a parcel of air can contain before it becomes saturated (100% relative humidity) and forms into a cloud (a group of visible and tiny water and ice particles suspended above the Earth's surface)[4] depends on its temperature. Warmer air can contain more water vapor than cooler air before becoming saturated. Therefore, one way to saturate a parcel of air is to cool it. The dew point is the temperature to which a parcel must be cooled in order to become saturated.[5]There are four main mechanisms for cooling the air to its dew point: adiabatic cooling, conductive cooling, radiational cooling, and evaporative cooling. Adiabatic cooling occurs when air rises and expands.[6] The air can rise due to convection, large-scale atmospheric motions, or a physical barrier such as a mountain (orographic lift). Conductive cooling occurs when the air comes into contact with a colder surface,[7] usually by being blown from one surface to another, for example from a liquid water surface to colder land. Radiational cooling occurs due to the emission of infrared radiation, either by the air or by the surface underneath.[8] Evaporative cooling occurs when moisture is added to the air through evaporation, which forces the air temperature to cool to its wet-bulb temperature, or until it reaches saturation.[9]
The main ways water vapor is added to the air are: wind convergence into areas of upward motion,[10] precipitation or virga falling from above,[11] daytime heating evaporating water from the surface of oceans, water bodies or wet land,[12] transpiration from plants,[13] cool or dry air moving over warmer water,[14] and lifting air over mountains.[15] Water vapor normally begins to condense on condensation nuclei such as dust, ice, and salt in order to form clouds. Elevated portions of weather fronts (which are three-dimensional in nature)[16] force broad areas of upward motion within the Earth's atmosphere which form clouds decks such as altostratus or cirrostratus.[17] Stratus is a stable cloud deck which tends to form when a cool, stable air mass is trapped underneath a warm air mass. It can also form due to the lifting of advection fog during breezy conditions
Frontal activity
Main article: Weather fronts
Stratiform (a broad shield of precipitation with a relatively similar intensity) and dynamic precipitation (convective precipitation which is showery in nature with large changes in intensity over short distances) occur as a consequence of slow ascent of air in synoptic systems (on the order of cm/s), such as in the vicinity of cold fronts and near and poleward of surface warm fronts. Similar ascent is seen around tropical cyclones outside of the eyewall, and in comma-head precipitation patterns around mid-latitude cyclones.[31] A wide variety of weather can be found along an occluded front, with thunderstorms possible, but usually their passage is associated with a drying of the air mass. Occluded fronts usually form around mature low-pressure areas.[17] What separates rainfall from other precipitation types, such as ice pellets and snow, is the presence of a thick layer of air aloft which is above the melting point of water, which melts the frozen precipitation well before it reaches the ground. If there is a shallow near surface layer that is below freezing, freezing rain (rain which freezes on contact with surfaces in subfreezing environments) will result.[32] Hail becomes an increasingly infrequent occurrence when the freezing level within the atmosphere exceeds 11,000 feet (3,400 m) above ground level.[33]Convection
Convective rain, or showery precipitation, occurs from convective clouds, e.g., cumulonimbus or cumulus congestus. It falls as showers with rapidly changing intensity. Convective precipitation falls over a certain area for a relatively short time, as convective clouds have limited horizontal extent. Most precipitation in the tropics appears to be convective; however, it has been suggested that stratiform precipitation also occurs.[31][34] Graupel and hail indicate convection.[35] In mid-latitudes, convective precipitation is intermittent and often associated with baroclinic boundaries such as cold fronts, squall lines, and warm fronts.[36]Orographic effects
Main articles: Orographic lift, Precipitation types (meteorology), and United States rainfall climatology
Orographic precipitation occurs on the windward side of mountains and is caused by the rising air motion of a large-scale flow of moist air across the mountain ridge, resulting in adiabatic cooling and condensation. In mountainous parts of the world subjected to relatively consistent winds (for example, the trade winds), a more moist climate usually prevails on the windward side of a mountain than on the leeward or downwind side. Moisture is removed by orographic lift, leaving drier air (see katabatic wind) on the descending and generally warming, leeward side where a rain shadow is observed.[15]In Hawaii, Mount Waiʻaleʻale, on the island of Kauai, is notable for its extreme rainfall, as it has the second highest average annual rainfall on Earth, with 460 inches (12,000 mm).[37] Systems known as Kona storms affect the state with heavy rains between October and April.[38] Local climates vary considerably on each island due to their topography, divisible into windward (Koʻolau) and leeward (Kona) regions based upon location relative to the higher mountains. Windward sides face the east to northeast trade winds and receive much more rainfall; leeward sides are drier and sunnier, with less rain and less cloud cover.[39]
In South America, the Andes mountain range blocks Pacific moisture that arrives in that continent, resulting in a desertlike climate just downwind across western Argentina.[40] The Sierra Nevada range creates the same effect in North America forming the Great Basin and Mojave Deserts.[41][42]
Within the tropics
See also: Monsoon and Tropical cyclone
Main article: Wet season
The wet, or rainy, season is the time of year, covering one or more months, when most of the average annual rainfall in a region falls.[43] The term green season is also sometimes used as a euphemism by tourist authorities.[44] Areas with wet seasons are dispersed across portions of the tropics and subtropics.[45] Savanna climates and areas with monsoon regimes have wet summers and dry winters. Tropical rainforests technically do not have dry or wet seasons, since their rainfall is equally distributed through the year.[46] Some areas with pronounced rainy seasons will see a break in rainfall mid-season when the intertropical convergence zone or monsoon trough move poleward of their location during the middle of the warm season.[24] When the wet season occurs during the warm season, or summer, rain falls mainly during the late afternoon and early evening hours. The wet season is a time when air quality improves,[47] freshwater quality improves,[48][49] and vegetation grows significantly.Tropical cyclones, a source of very heavy rainfall, consist of large air masses several hundred miles across with low pressure at the centre and with winds blowing inward towards the centre in either a clockwise direction (southern hemisphere) or counter clockwise (northern hemisphere).[50] Although cyclones can take an enormous toll in lives and personal property, they may be important factors in the precipitation regimes of places they impact, as they may bring much-needed precipitation to otherwise dry regions.[51] Areas in their path can receive a year's worth of rainfall from a tropical cyclone passage.[52]
Human influence
See also: Global warming and Urban heat island
The fine particulate matter produced by car exhaust and other human sources of pollution forms cloud condensation nuclei, leads to the production of clouds and increases the likelihood of rain. As commuters and commercial traffic cause pollution to build up over the course of the week, the likelihood of rain increases: it peaks by Saturday, after five days of weekday pollution has been built up. In heavily populated areas that are near the coast, such as the United States' Eastern Seaboard, the effect can be dramatic: there is a 22% higher chance of rain on Saturdays than on Mondays.[53] The urban heat island effect warms cities 0.6 °C (1.1 °F) to 5.6 °C (10.1 °F) above surrounding suburbs and rural areas. This extra heat leads to greater upward motion, which can induce additional shower and thunderstorm activity. Rainfall rates downwind of cities are increased between 48% and 116%. Partly as a result of this warming, monthly rainfall is about 28% greater between 20 miles (32 km) to 40 miles (64 km) downwind of cities, compared with upwind.[54] Some cities induce a total precipitation increase of 51%.[55]Increasing temperatures tend to increase evaporation which can lead to more precipitation. Precipitation generally increased over land north of 30°N from 1900 through 2005 but has declined over the tropics since the 1970s. Globally there has been no statistically significant overall trend in precipitation over the past century, although trends have varied widely by region and over time. Eastern portions of North and South America, northern Europe, and northern and central Asia have become wetter. The Sahel, the Mediterranean, southern Africa and parts of southern Asia have become drier. There has been an increase in the number of heavy precipitation events over many areas during the past century, as well as an increase since the 1970s in the prevalence of droughts—especially in the tropics and subtropics. Changes in precipitation and evaporation over the oceans are suggested by the decreased salinity of mid- and high-latitude waters (implying more precipitation), along with increased salinity in lower latitudes (implying less precipitation and/or more evaporation). Over the contiguous United States, total annual precipitation increased at an average rate of 6.1 percent since 1900, with the greatest increases within the East North Central climate region (11.6 percent per century) and the South (11.1 percent). Hawaii was the only region to show a decrease (-9.25 percent).[56]
The most successful attempts at influencing weather involve cloud seeding which include techniques used to increase winter precipitation over mountains and suppress hail.[57]
Characteristics
Patterns
Main article: Rainband
Rainbands are cloud and precipitation areas which are significantly elongated. Rainbands can be stratiform or convective,[58] and are generated by differences in temperature. When noted on weather radar imagery, this precipitation elongation is referred to as banded structure.[59] Rainbands in advance of warm occluded fronts and warm fronts are associated with weak upward motion,[60] and tend to be wide and stratiform in nature.[61]Rainbands spawned near and ahead of cold fronts can be squall lines which are able to produce tornadoes.[62] Rainbands associated with cold fronts can be warped by mountain barriers perpendicular to the front's orientation due to the formation of a low-level barrier jet.[63] Bands of thunderstorms can form with sea breeze and land breeze boundaries, if enough moisture is present. If sea breeze rainbands become active enough just ahead of a cold front, they can mask the location of the cold front itself.[64]
Once a cyclone occludes, a trough of warm air aloft, or "trowal" for short, will be caused by strong southerly winds on its eastern periphery rotating aloft around its northeast, and ultimately northwestern, periphery (also known as the warm conveyor belt), forcing a surface trough to continue into the cold sector on a similar curve to the occluded front. The trowal creates the portion of an occluded cyclone known as its comma head, due to the comma-like shape of the mid-tropospheric cloudiness that accompanies the feature. It can also be the focus of locally heavy precipitation, with thunderstorms possible if the atmosphere along the trowal is unstable enough for convection.[65] Banding within the comma head precipitation pattern of an extratropical cyclone can yield significant amounts of rain.[66] Behind extratropical cyclones during fall and winter, rainbands can form downwind of relative warm bodies of water such as the Great Lakes. Downwind of islands, bands of showers and thunderstorms can develop due to low level wind convergence downwind of the island edges. Offshore California, this has been noted in the wake of cold fronts.[67]
Rainbands within tropical cyclones are curved in orientation. Tropical cyclone rainbands contain showers and thunderstorms that, together with the eyewall and the eye, constitute a hurricane or tropical storm. The extent of rainbands around a tropical cyclone can help determine the cyclone's intensity.[68]
Acidity
See also: Acid rain
The pH of rain varies, especially due to its origin. On Americas East Coast, rain that is derived from the Atlantic Ocean typically has a pH of 5.0-5.6; rain that comes across the continental from the west has a pH of 3.8-4.8; and local thunderstorms can have a pH as low as 2.0.[69] Rain becomes acidic primarily due to the presence of two strong acids, sulfuric acid (H2SO4) and nitric acid (HNO3). Sulfuric acid is derived from natural sources such as volcanoes, and wetlands (sulfate reducing bacteria); and anthropogenic sources such as the combustion of fossil fuels, and mining where H2S is present. Nitric acid is produced by natural sources such as lightning, soil bacteria, and natural fires; while also produced anthropogenically by the combustion of fossil fuels and from power plants. In the past 20 years the concentrations of nitric and sulfuric acid has decreased in presence of rainwater, which may be due to the significant increase in ammonium (most likely as ammonia from livestock production), which acts as a buffer in acid rain and raising the pH.[70]
No comments:
Post a Comment